
NetSciX School Lecture

Deep Graph Learning
A Gentle Introduction for Network Scientists

Prof. Dr. Ingo Scholtes
CAIDAS-Chair of Machine Learning for Complex Networks
Center for Artificial Intelligence and Data Science
Julius-Maximilians-Universität Würzburg, Germany
ingo.scholtes@uni-wuerzburg.de

Network models of complex systems

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21
22

23

24

25
26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

complex networks

▶ graph or network consists of a collection of nodes, where some
pairs of nodes are connected by links

▶ universal mathematical abstraction for complex systems that
consist of many interacting elements

image credit: www.geni.org, pixabay, adapted from → Woods et al., 2017 and → MM Bronstein et al., 2017

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 1

From network science to graph learning

▶ how can we apply machine learning to complex networks?
▶ how can network scientists help to advance deep learning for graph-structured data?

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 2

Outline of today’s lecture
Intro to Machine Learning for Complex Networks → 15 mins

▶ Supervised vs. Unsupervised Learning
▶ Machine Learning for Euclidean Data
▶ Euclidean Machine Learning on Graphs

Deep Learning Fundamentals → 15 mins

▶ Perceptron Learning
▶ Feed-Forward Neural Networks
▶ Gradient Descent and Backpropagation

Deep Graph Learning and Graph Neural Networks → 30 mins

▶ Neural Message Passing
▶ Graph Convolutional Networks
▶ Semi-Supervised Learning

Research Challenges in Deep Graph Learning → 15 mins

▶ Expressivity, Noisy Data, Heterophilic Networks
▶ Over-Smoothing/Over-Squashing, Temporal Data and Causality

accompanying hands-on tutorial with
12 jupyter notebooks available at

https://github.com/pathpy/
2026-netscix-tutorial/

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 3

https://github.com/pathpy/2026-netscix-tutorial/
https://github.com/pathpy/2026-netscix-tutorial/

Supervised vs. unsupervised machine learning

learn model in labeled examples

2 1 0 1 2
x1

1.0

0.5

0.0

0.5

1.0

x2

cluster
0
1

example: classification with support vector machine (SVM)

find d − 1-dim. hyperplane that separates classes such that
margin of decision boundary is maximized

detect patterns in unlabeled data

2 1 0 1 2

X1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

X 2

cluster_assigned
0.0
1.0

example: k-means cluster detection

assign data points to k clusters, such that squared distance of
points to closest cluster center is minimized

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 4

Machine Learning in Euclidean data 1/2
▶ traditional machine learning techniques assume

Euclidean feature spaces, e.g. xi ∈ Rd

▶ d-dimensional Euclidean space is metric space with
Euclidean distance metric

▶ Euclidean vector space = d-dimensional inner product
space over R

α

∥y⃗ − x⃗∥ =
√

(x1 − y1)2 + (x2 − y2)2

x⃗ · y⃗ = x1y1 + x1x2 = ∥x⃗∥∥y⃗∥ cos α

Euclid of Alexandria as depicted in the fresco
“The School of Athens”

born ca. 325 BC

image credit: public domain

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 5

Machine Learning in Euclidean data 2/2

example method: suppport vector machine (SVM)

find d − 1-dim. hyperplane that separates classes such that margin
of decision boundary is maximized → BSc/MSc Lecture: Data Mining

dot product between xi ∈ R2, i.e. we use
property of inner product space

example method: k-means clustering

assign data points to k clusters, such that squared dist. of points to
closest cluster center is minimal → Bsc/MSc Lecture: Data Mining

distance between xi ∈ R2, i.e. we use property
of metric space

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 6

Machine Learning for Complex Networks?
▶ how can we apply machine learning to

non-Euclidean data with graph structure?

traditional two-step approach

1. map graph to Euclidean space
→ graph embedding, representation learning, graph kernels

2. apply Euclidean machine learning
techniques, e.g. logistic regression, SVM,
neural networks, . . .

example: binary node classification

1. use Laplacian Eigenmaps to generate
Euclidean representation of nodes in a graph

2. apply logistic regression to classify nodes
based on their Euclidean representation

0.1 0.0 0.1 0.2 0.3
x0

0.2

0.1

0.0

0.1

0.2

0.3

x1

g
0
1

tutorial notebooks

see notebooks 01 – 03 in repository at
→ https://github.com/pathpy/2026-netscix-tutorial

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 7

https://github.com/pathpy/2026-netscix-tutorial

From Logistic Regression to Perceptron
▶ perceptron is a classifier inspired by neuron → F Rosenblatt, 1958

▶ linear combination f : Rk → R of inputs with bias β0 ∈ R
and weights β1, . . . , βk ∈ R, i.e.

f (x⃗) := β0 +
k∑

i=1
βi · xi = β⃗ · (1, x⃗)T

with β⃗ ∈ Rk+1 and (1, x⃗) := (1, x1, . . . , xk)
▶ non-linear activation function yields binary classifier, e.g.

σ(f (x⃗)) = 1
1 + e−f (x⃗) ∈ [0, 1]

where σ is logistic function (which make perceptron identical
to logistic regression!)

activation
function f

∑
β2

x2

β1

x1

β0

...

...

βk

xk

linear combination
f (x⃗) = β0 + β⃗ · x⃗

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 8

Gradient-based Learning of Parameters
▶ for given parameters β⃗ ∈ Rk+1 and training examples (x⃗s , ŷs) we define L2 loss function as

L(β⃗) := 1
2

n∑
s=1

(σ(f (x⃗s)) − ŷs)2

▶ idea: move along gradients of L to find parameters β̂ that minimize loss function
▶ calculate how training example (x⃗s , ŷs) contributes to partial derivatives of loss function

∂Ls
∂βj

=(ys − ŷs) · ys · (1 − ys) · xsj (for j = 1, . . . , k)

∂Ls
∂β0

=(ys − ŷs) · ys · (1 − ys)

perceptron learning algorithm (L2 loss, logistic activation function)

1. choose initial parameters βi = 0 and learning rate η ∈ [0, 1]
2. for each (x⃗s , ys) in training batch do:

▶ β0 = β0 − η(ys − ŷs) · ys · (1 − ys)
▶ βj = βj − η(ys − ŷs) · ys · (1 − ys) · xsj for j = 1, . . . , k

3. repeat 2 until L(β⃗) ≤ ϵ → M Minsky and S Papert, 1969

graph learning terminology

▶ training batch is a subset of training examples
used to calculate the gradient in one iteration of
the learning algorithm

▶ epoch is a full pass through the training data, i.e.
one iteration of the learning algorithm for each
training example

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 9

Feed-Forward Neural Networks
▶ like logistic regression, perceptron classifier has linear

decision boundary

▶ idea: couple multiple layers of perceptrons
▶ neuron hj in hidden layer with k inputs with width d

hj := hj (x⃗) = σ

(
β1

0,j +
k∑

i=1

β1
i,j xi

)
= σ(β⃗1

j · (1, x⃗)T)

▶ neuron yi in output layer with d inputs

yi := yi (x⃗) = σ

(
β2

0,i +
d∑

j=1

β2
j,i hj (x⃗)

)
= σ(β⃗2

i · (1, h⃗)T)

Universal Approximation Theorem

“arbitrary decision regions can be arbitrarily well approximated by continuous
feedforward neural networks with only a single [. . .] hidden layer and any
continuous sigmoidal nonlinearity” → G Cybenko, 1989

0.1 0.0 0.1 0.2 0.3
x0

0.2

0.1

0.0

0.1

0.2

0.3

x1

predicted
0
1

x1

x2

h1

h2

y1

β1
1,1

β1
1,2

β1
2,1

β1
2,2

β2
1,1

β2
2,1

non-linear decision boundary of feed-forward
network with one hidden layer with width

d = 2
Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 10

Gradient Optimization in Neural Networks
▶ for training samples (x⃗s , ŷs) and output ys := y1(x⃗s) consider L2 loss function

L(β1, β2) = 1
2

n∑
s=1

(ŷs − ys)2 and Ls(β1, β2) = 1
2(ŷs − ys)2

where βj is weight matrix of neurons in layer j and Ls is contribution of (x⃗s , ŷs)
▶ output ys of feed-forward network with two layers and activation function σ is given by

composition of functions, i.e. ys = σ(β2 · σ(β1 · (1, x⃗s)T))
▶ for output neuron yi application of chain rule yields partial derivates w.r.t. β2

j,i

∂Ls
∂β2

j,i
= (ŷs − ys)σ′(β⃗2

i · (1, h⃗)T︸ ︷︷ ︸
input to yi

)hj(x⃗s)

▶ for hidden neuron hj we apply chain rule once more and obtain partial derivatives w.r.t. β1
k,j

∂Ls
∂β1

k,j
= (ŷs − ys)σ′(β⃗2

i · (1, h⃗)T︸ ︷︷ ︸
input to yi

)β2
i ,jσ

′(β⃗1
j · (1, x⃗s)T︸ ︷︷ ︸

input to hj

) · xsk

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 11

Neural Networks as Computation Graphs

...

...
...

x1

x2

x3

xk

h1

hd

y1

ym

β1
1,1

β1
1,d

β1
2,1

β1
2,d

β1
3,1

β1
3,d

β1
k,1

β1
k,d

β2
1,1

β2
1,m

β2
d,1

β2
d,m

input
layer

hidden
layer

output
layer

▶ (deep) neural networks = computation graph (where neurons between layers are fully connected)
▶ to calculate gradients of loss function w.r.t weights, we recursively apply chain rule, starting at

outputs yi until we reach the inputs xi
Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 12

Differentiation via Backpropagation
▶ to calculate parameter gradients we propagate model loss backwards from output to input layer

→ DE Rumelhart et al., 1986

stochastic gradient descent optimization algorithm for feed-forward neural network

1. choose initial parameters βl
ij and learning rate η ∈ [0, 1]

2. for i in range(iterations) do:
3. batch = random subset of training examples
4. for each (x⃗s , ŷs) in training batch do:
5. update weights of output neurons yi

β2
j,i = β2

j,i − η(ŷs − ys)σ′(β⃗2
i · (1, h⃗)T)hj (x⃗s)

6. update weights of hidden neurons hj

β1
k,j = β1

k,j − η(ŷs − ys)σ′β⃗2
i · (1, h⃗)T β2

i,j σ
′(β⃗1

j · (1, x⃗s)T) · xsk

tutorial notebooks

see notebooks 04 – 06 in repository at
→ https://github.com/pathpy/2026-netscix-tutorial

see how we can use pytorch’s
autograd feature to automatically

calculate gradients of loss functions in
feed-forward neural networks

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 13

https://github.com/pathpy/2026-netscix-tutorial

End-to-end deep learning for complex networks?

two-step approach to ML for complex networks

1. map graph to Euclidean space
→ embedding, representation learning, graph kernels

2. apply Euclidean machine learning techniques
→ e.g. feed-forward neural networks

problem

▶ Euclidean representation independent of learning task
and machine learning model

▶ we want to learn representations tailored to specific
learning task (e.g. node classification)

▶ how can we apply end-to-end deep
learning to graph-structured data?

supervised unsupervised

node
level

community detection
node classification node embedding

edge
level

link prediction link prediction
link classification graph reconstruction

graph
level

graph classification graph clustering
graph regression graph embedding

taxonomy of popular graph learning tasks

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 14

Neural Message Passing and GNNs 1/2
▶ idea: use graph topology to update node features based

on message passing algorithm → J Gilmer et al. 2017

▶ network science view: discrete-time dynamical system
where h(t)

i ∈ Rd denotes state of node i at time t

▶ nodes update their state h(t)
i based on states of their

neighbors, i.e.

h(t)
i = Fj∈N(i)h

(t−1)
j

where F is aggregation function and N(i) is set of
neighbors of i

▶ for add aggregation we get update rule

h(t)
i =

∑
j∈N(i)

h(t−1)
j

a b

c

de

add aggregation rule

node t = 0 t = 1 t = 2
a 1 5 16
b 2 4 17
c 3 12 24
d 4 8 19
e 5 7 20

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 15

Neural Message Passing and GNNs 2/2
▶ for networks without self-loops, nodes do not consider

their own prior state

▶ to avoid this, we explicitly add self-loops

h(t)
i =

∑
j∈N(i)∪{i}

h(t−1)
j

▶ we can additionally transform updated node state with
differentiable function g (e.g. a perceptron), i.e.

h(t)
i = g

 ∑
j∈N(i)∪{i}

h(t−1)
j


▶ message passing is permutation equivariant, i.e. node

permutation → consistent permutation of outputs h(t)
i

a b

c

de

additional transformation with g(x) = 0.5 + 2 · x

node t = 0 t = 1 t = 2
a 1 12.5 111.5
b 2 12.5 111.5
c 3 30.5 209.5
d 4 24.5 159.5
e 5 24.5 159.5

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 16

Degree-based Normalization
▶ heterogeneity of networks requires application of

degree-based normalization

▶ we can use mean rather than add aggregation, i.e.

h(t)
i = g

 ∑
j∈N(i)

h(t−1)
j
di


▶ we can apply symmetric degree-based normalization, i.e.

h(t)
i = g

 ∑
j∈N(i)

h(t−1)
j√
didj


a b

c

de

symmetric normalization (and self-loops)

node t = 0 t = 1 t = 2
a 1 1.8 2.1
b 2 1.8 2.1
c 3 2.7 3.6
d 4 3.8 3.5
e 5 3.8 3.5

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 17

Spectral Graph Convolution
▶ for graph with adjacency matrix A and diagonal degree

matrix D consider Laplacian matrix

L := D − A

▶ symmetric degree-based normalization yields symmetric
normalized Laplacian → F Chung, 1997

L∗ = D
1
2 LD

1
2 = I − D− 1

2 AD− 1
2

with entries

L∗
ij =


− 1√

di ·dj
if i ̸= j and Aij = 1

1 if i = j
0 else

▶ message passing can be viewed as efficient localized
version of spectral graph convolution
→ T Kipf and M Welling, 2017

a b

c

de

Symmetric Normalized Laplacian

L∗ =


1 − 1

2 − 1
2
√

2
0 0

− 1
2 1 − 1

2
√

2
0 0

− 1
2
√

2
− 1

2
√

2
1 − 1

2
√

2
− 1

2
√

2
0 0 − 1

2
√

2
1 − 1

2
0 0 − 1

2
√

2
− 1

2 1


Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 18

Connection to heat diffusion and CNNs
▶ consider Laplacian operator describing heat diffusion in

continuous Euclidean space

∇f := ∂2f
∂x2 + ∂2f

∂y2

▶ ∇f (x , y) captures how f (x , y) deviates from average of
f in neighborhood of (x , y)

▶ for discrete lattice network, Laplacian operator
corresponds to Laplacian matrix

▶ in image data (where pixels are connected in a lattice) we
can use Laplacian convolution kernel to detect edges

▶ spectral graph convolution allows to detect “boundaries”
or “discontinuities” in graphs with arbitrary topology

image after applying
Laplace filter

Laplace filter

ω =

[1 2 3

1 0 −1 0
2 −1 4 −1
3 0 −1 0

]

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 19

Graph Convolutional Networks (GCN)
▶ message passing with self-loops and symmetric

degree-normalization defines Graph Convolutional Networks
(GCN) → T Kipf, M Welling, 2016

▶ update rule in message passing layer of GCN given as

h(k)
i := σ

W(k) ∑
j∈N(i)∪{i}

h(k−1)
j√
didj


where W(k) ∈ Rd(k) × d (k−1) are learnable weights and σ is
non-linear activation function

▶ message passing layer k maps node representations
h(k−1)

i ∈ Rd(k−1)
to h(k)

i ∈ Rd(k)

▶ we can add dense classification layers after k message passing
layers to learn latent representations of nodes

Thomas Kipf

image credit: https://tkipf.github.io/
Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 20

https://tkipf.github.io/

Computation Graph of GCN

tutorial notebooks

see notebooks 07 – 10 in repository at
→ https://github.com/pathpy/2026-netscix-tutorial/

in the tutorial notebooks we implement convolutional
neural networks (CNN) for image classification from scratch
and then generalize them to graph convolutional networks

(GCN) using pytorch-geometric

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 21

https://github.com/pathpy/2026-netscix-tutorial/

Deep learning in complex networks
▶ graph convolutional network (GCN) = neural

network architecture for graph-structured data
→ T Kipf, M Welling, 2017

▶ neural message passing: use complex network to
iteratively update node features based on

1. differentiable function with (learnable) parameters
2. neighbor aggregation function
3. non-linear activation function

end-to-end representation learning

▶ use differentiable loss function to compare model output to
ground truth (supervised setting)

▶ partial derivatives w.r.t. model parameters yield gradients that
point towards local minimum of loss function

▶ GPU-accelerated backpropagation algorithm to learn “useful”
vector space representation
→ DE Rumelhart, GE Hinton, RJ Williams, Nature, 1986

1

2 3

4

9

87
5

6

2

3

4

5

6
7

8
9

11
2

3

4

6

5

7

8
9

1
2

3

4

5

6
7

8
9

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 22

Graph representation learning
0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15
16

17
1819

20

2122
23

24

25
26

27
28

29

30

31

32

3334
35

36

37

38

39

40
41

42

43
44

45

46

47 48

49

50

51 52

53

54 55
56

57

58

59 60

61

62
63

64

6566 67
68

69

70
71

7273

74
75

76

77

78

79
80

81

82

83
84

85
86

8788

89
9091

9293
9495

96

97

98

99

feature = 0

feature = 1

feature = 0
feature = 1

synthetic graph with four classes of nodes

node features

gr
ap

h
to

po
lo

gy

internal representation of nodes learned by Graph

Convolutional Network

learned latent representation captures patterns in node features and network topology

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 23

Example: GCN-based Node Classification
example

Karate club network with n = 34 nodes and m = 77 links, where ground truth node classes
ŷ are given by groups

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

training network with 70 % labeled nodes

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

predicted node classes in test set
(accuracy 90%)

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 24

Example: Latent Node Representations
example

Karate club network with n = 34 nodes and m = 77 links, where ground truth node classes
ŷ are given by groups

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

Karate club network with
ground truth node labels

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

0.0

0.5

1.0

1.5

latent representation of nodes extracted from activations in
first hidden layer (d = 16) of GCN (representation in R2 via

Truncated SVD)
Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 25

Semi-supervised Learning in Graphs
▶ use of topological features enables application

of GCN to semi-supervised learning in graphs

semi-supervised learning

machine learning techniques that can simultaneously use large
amounts of unlabeled data as well as small amounts of labeled
data

example

semi-supervised node classification in network with a single
labeled node per class

▶ message passing layers smoothen existing
labels across unlabeled nodes close to labeled
ones

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 26

Example: Semi-Supervised Graph Learning 1/2
example

▶ semi-supervised node classification in Karate club network with n = 34 nodes and
m = 77 links

▶ ground truth node class given for one node in one community

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

training network with single labeled node

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

predicted node classes in test set using GCN with single
message passing layer

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 27

Example: Semi-Supervised Graph Learning 2/2
example

▶ semi-supervised node classification in Karate club network with n = 34 nodes and
m = 77 links

▶ ground truth node class given for two nodes in two communities

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

training network with two labeled nodes

5
16

6

8 30

32

0
3

33

2

9

1

13

4

19

23

25

12

7

29

24

27

11

10

28

26

1721

31

14

15

18

20

22

predicted node classes in test set using GCN with single
message passing layer

(accuracy 87.8%)
Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 28

Research Challenge: Expressive power of GNNs
▶ which networks are distinguishable by GNNs?

▶ graph ismormorphism = basis to study
expressive power of neural message passing

Weisfeiler-Leman (WL) color refinement algorithm

▶ start with identical node features (e.g. colors)
▶ update nodes iteratively by aggregating features of

neighbors and assigning new features (e.g. R+R = B)
▶ repeat until no new features are assigned
▶ final node features = graph signature or “representation”

▶ WL-algorithm provides one-sided heuristic to
distinguish non-isomorphic graphs
→ B Weisfeiler, A Leman, 1968

▶ properly parameterized GNNs not more
powerful than WL-algorithm → C Morris et al., AAAI 2019

graph isomorphism

▶ consider graphs G1 = (V1, E1) and G2 = (V2, E2)
▶ G1 and G2 are isomorphic iff there exists a bijection

π : V1 → V2 that preserves all edges

A B C

D E

A B C

D E

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 29

Research Challenge: GNNs for Heterophilic Networks
▶ most GNNs are designed for homophilic networks where

connected nodes tend to have similar features or labels

▶ interpretation of GCN in terms of spectral graph
convolution: low-pass filter that smoothens node
features across edges

▶ in heterophilic networks connected nodes tend to have
different features and/or labels

▶ simple GNN models like GCN perform poorly on
networks with (malignant) heterophilic patterns
→ Z Pei et al., ICLR 2021

▶ GNN architectures for heterophilic networks are an
active area of research → S Luan et al. 2024

→ https://arxiv.org/pdf/2407.09618

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 30

https://arxiv.org/pdf/2407.09618

Research Challenge: Over-smoothing and Over-squashing
▶ number of message passing layers in GNNs determines

how far information can propagate in a graph

▶ small number of layers -> GNN cannot capture
long-range dependencies

▶ GNNs typically perform best with 2-3 layers

problems with “deep” GNNs

▶ over-smoothing: for large number of layers node
representations become indistinguishable

▶ over-squashing: long-range dependencies may not captured
due to bottlenecks in the graph

▶ mitigating over-smoothing and over-squashing is active
area of research, addressed e.g. via targeted rewiring
→ Attali et al. 2024 or Graph Transformers → A Shehzad et al. 2025

https://proceedings.mlr.press/v231/
fesser24a/fesser24a.pdf

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 31

https://proceedings.mlr.press/v231/fesser24a/fesser24a.pdf
https://proceedings.mlr.press/v231/fesser24a/fesser24a.pdf

Research Challenge: GNNs for Noisy Data
▶ real-world data is often noisy, e.g. due to measurement

errors or missing data

▶ GNNs can be sensitive to noise in the graph structure
and/or node feature/labels

exemplary network science approach

▶ treat observed network as random realization from
underlying statitical ensemble of graphs

▶ calculate uncertainty estimates for edges

▶ in message passing, use uncertainty estimates to weight
messages

▶ improving robustness of GNNs against noise in input
data is active area of research → Z Shafi et al. 2024

→ https://openreview.net/pdf?id=N8tCUSzUFM

more on Feb 18, 11:30 (stream 1)

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 32

https://openreview.net/pdf?id=N8tCUSzUFM

Research Challenge: GNNs for Temporal Networks
▶ graph = model for possible causal influence between

nodes in a networked system

▶ neural message passing in graph neural networks uses
all possible paths

▶ but: cause must temporally preceed effects

Sir Arthur Stanley
Eddington
1882 – 1944

image credit: public domain

“ I shall use the phrase ’time’s arrow’ to ex-
press this one-way property of time which has
no analogue in space.” → Sir Arthur Eddington

open issue

state-of-the-art temporal graph neural networks
ignore arrow of time in temporal networks

→ L Qarkaxhija, V Perri, I Scholtes, PMLR 2022

DC

A B

A B C D
from to when

A B 12:30
B C 12:31
D B 12:33
C A 12:35
D B 12:36
B D 12:37
D A 12:41

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 33

Causality-aware temporal GNNs
▶ De Bruijn graph neural network (DBGNN) = deep learning

architecture using higher-order De Bruijn graphs

▶ idea: perform neural message passing to higher-order
model that forces messages to follow arrow of time

causality-aware graph representation learning

▶ gradient descent optimization yields static vector space
representation of temporal network that captures . . .

▶ topology of interactions between nodes
▶ “causality” due to temporal order of interactions

▶ substantially increases model performance compared to
state-of-the-art (temporal) GNNs → L Qarkaxhija, V Perri, I Scholtes, PMLR 2022

▶ integrating network science insights into temporal
networks with time-aware GNNs is active area of
research

→ https://arxiv.org/abs/2505.24438

more on Feb 18, 11:45 (stream 1)

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 34

https://arxiv.org/abs/2505.24438

Network Science vs. Deep Graph Learning

Deep
Learning

Network
Science scalable learning

(semi-)supervised learning
learning theory
expressiveness

statistical ensembles
inference in uncertain data

dynamical processes
higher-order networks

NetSci / NetSci-X
Phys. Rev. E

Phys. Rev. Lett.
Nature Comm.

Advances in Complex Systems
EPJ Data Science

. . .

NeurIps
ICLR
ICML
AAAI

SIGKDD
LoG
. . .

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 35

Ngā mihi!

Open Source library pathpyG

▶ based on torch and torch-geometric
▶ direct connection to netzschleuder repository for data loading
▶ makes it easy to apply GNNs to static and temporal networks
▶ causality-aware temporal graph learning via De Bruijn graph

neural networks

www.pathpy.net

→ https://arxiv.org/abs/2502.01177

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17 36

https://arxiv.org/abs/2502.01177

	Machine Learning for Complex Networks
	Deep Learning Fundamental
	Deep Graph Learning and Graph Neural Networks
	Research Challenges in Deep Graph Learning

