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Network models of complex systems

complex networks

> graph or network consists of a collection of nodes, where some
pairs of nodes are connected by links

P universal mathematical abstraction for complex systems that
consist of many interacting elements

image credit: www.geni.org, pixabay, adapted from —> Woods et al., 20177 and — MM Bronstein et al., 2017
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From network science to graph learning

» how can we apply machine learning to complex networks?

» how can network scientists help to advance deep learning for graph-structured data?
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Outline of today’s lecture

Intro to Machine Learning for Complex Networks
> Supervised vs. Unsupervised Learning
> Machine Learning for Euclidean Data

> Euclidean Machine Learning on Graphs

Deep Learning Fundamentals
> Perceptron Learning
> Feed-Forward Neural Networks

> Gradient Descent and Backpropagation

Deep Graph Learning and Graph Neural Networks
> Neural Message Passing
> Graph Convolutional Networks

> Semi-Supervised Learning

Research Challenges in Deep Graph Learning

> Expressivity, Noisy Data, Heterophilic Networks

> Over-Smoothing/Over-Squashing, Temporal Data and Causality
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— @ 3, :%,.: . @

— 15 mins
— 30 mins :.. ..:
accompanying hands-on tutorial with
12 jupyter notebooks available at
https://github.com/pathpy/
=>BilE 2026-netscix-tutorial/
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Supervised vs. unsupervised machine learning

learn model in labeled examples

detect patterns in unlabeled data

cluster
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example: classification with support vector machine (SVM)

find d — 1-dim. hyperplane that separates classes such that
margin of decision boundary is maximized
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example: k-means cluster detection

assign data points to k clusters, such that squared distance of
points to closest cluster center is minimized
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Machine Learning in Euclidean data

» traditional machine learning techniques assume
Euclidean feature spaces, e.g. x; € RY

» d-dimensional Euclidean space is metric space with
Euclidean distance metric

» Euclidean vector space = d-dimensional inner product
space over R

Hy . )?H = \/(Xl - )2 + (X2 . )/2)2 Euclid of Alexandria as depicted in the fresco

o R, “The School of Athens”
Xy =xiy1+x1x2 = HX”H)’HCOSO‘ born ca. 325 BC
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Machine Learning in Euclidean data

cluster

example method: suppport vector machine (SVM)

find d — 1-dim. hyperplane that separates classes such that margin
of decision boundary is maximized — Bsc/Msc Lecture: Data Mining

dot product between x; € R?, i.e. we use
property of inner product space
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example method: k-means clustering

assign data points to k clusters, such that squared dist. of points to
closest cluster center is minimal — Bsc/MsSc Lecture: Data Mining

distance between x; € R?, i.e. we use property
of metric space
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Machine Learning for Complex Networks?

» how can we apply machine learning to
non-Euclidean data with graph structure?

traditional two-step approach

1. map graph to Euclidean space

— graph embedding, representation learning, graph kernels

2. apply Euclidean machine learning
techniques, e.g. logistic regression, SVM,
neural networks, ...

example: binary node classification

1. use Laplacian Eigenmaps to generate
Euclidean representation of nodes in a graph

2. apply logistic regression to classify nodes
based on their Euclidean representation
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tutorial notebooks

see notebooks 01 - 03 in repository at
— https://github.com/pathpy/2026-netscix-tutorial
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From Logistic Regression to Perceptron

P perceptron is a classifier inspired by neuron — rrosenbiatt, 1958 @ @ . @
> linear combination f : RX — R of inputs with bias 3y € R

and weights 51,...,8« € R, i.e.

linear combinat_ipn
f(X)=po+ 6 X

k
F(X):=Bo+ > Bi-xi=0 (1,%)"
i=1

activation
function f

with 3 € R* 1 and (1,%) := (1, xq, ..., xk)
» non-linear activation function yields binary classifier, e.g.

a(f(x))

where o is logistic function (which make perceptron identical
to logistic regression!)

“iyerm <01
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Gradient-based Learning of Parameters

> for given parameters 3 € R¥*1 and training examples (Xs, ¥s) we define L2 loss function as

n

L(F) = 5 D (o (F(%) — 55

s=1
» idea: move along gradients of L to find parameters ﬁA that minimize loss function
> calculate how training example (Xs, Js) contributes to partial derivatives of loss function

OLs A _
=(ys — ¥s) ¥s (L—ys) x5 (forj=1,...,k)
dB;

os ., . .
—(YS _}/s) *Ys - ( - ys)
9Bo
perceptron learning algorithm (L2 loss, logistic activation function) graph learning terminology
1. choose initial parameters 3; = 0 and learning rate ) € [0, 1] P training batch is a subset of training examples
2. for each (s, ys) in training batch do: used to c.allculate t.he gradient in one iteration of
> 8o =By — ( _ & ) . (1 _ ) the learning algorithm
> 59 :B.O, 77(y57 Ays) e (1- ys) fori—=1 P P epoch is a full pass through the training data, i.e.
=" MYs = Ys) - Ys V) X 10T =24y one iteration of the learning algorithm for each
3. repeat2 until L(B) < € — mminskyand s Papert, 1969 training example
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Feed-Forward Neural Networks

> like logistic regression, perceptron classifier has linear
decision boundary

» idea: couple multiple layers of perceptrons

» neuron h; in hidden layer with k inputs with width d

k
hj = hj()?):U ﬁé,j‘f'z/gil,jxi :O—(B;l '(la)?)T)

i=1

» neuron y; in output layer with d inputs

d
vi=y(®) =0 B+ i) | = o8- LR
j=1
Universal Approximation Theorem

“arbitrary decision regions can be arbitrarily well approximated by continuous
feedforward neural networks with only a single [...] hidden layer and any
continuous sigmoidal nonlinearity” — G cybenko, 1989

predicted
° 0
o 1

non-linear decision boundary of feed-forward
network with one hidden layer with width
d=2
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Gradient Optimization in Neural Networks

> for training samples (X;, Js) and output ys := y1(Xs) consider L2 loss function

n

LB B2 = 3300 — e and Lo(846%) = 555 — o)’

s=1
where (3 is weight matrix of neurons in layer j and L is contribution of (X, Js)

» output ys of feed-forward network with two layers and activation function o is given by
composition of functions, i.e. ys = o(5% - o(B' - (1,%)7))

» for output neuron y; application of chain rule yields partial derivates w.r.. ﬂﬁ,

aLs
86ﬁi -

» for hidden neuron h; we apply chain rule once more and obtain partial derivatives w.rt. 5111,'

OLs 2 131 o\T
851 = ijo (/7)] : (17Xs) ) " Xsk
ki —
input to h;
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Neural Networks as Computation Graphs

input hidden output
layer layer layer

» (deep) neural networks = computation graph (where neurons between layers are fully connected)

» to calculate gradients of loss function w.r.t weights, we recursively apply chain rule, starting at
outputs y; until we reach the inputs x;
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Differentiation via Backpropagation

» to calculate parameter gradients we propagate model loss backwards from output to input layer

— DE Rumelhart et al., 1986

stochastic gradient descent optimization algorithm for feed-forward neural network

1. choose initial parameters ,8,11. and learning rate ) € [0, 1]
2. foriin range(iterations) do:

3. batch = random subset of training examples

4 for each (Xs, §s) in training batch do:

5 update weights of output neurons y;

/B'z,i = /812,: —n(ys — ys)a'/(ﬁi2 (1, E)T)hj()?s)

6. update weights of hidden neurons h;
/Bl{,j = 5/1,1' —n(¥s — YS)U (1, h)Tﬂ (/Bj : (17;55)7—) * Xsk

tutorial notebooks

see notebooks 04 - 06 in repository at
— https://github.com/pathpy/2026-netscix-tutorial
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O
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see how we can use pytorch'’s
autograd feature to automatically
calculate gradients of loss functions in
feed-forward neural networks
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End-to-end deep learning for complex networks?

two-step approach to ML for complex networks

1. map graph to Euclidean space
> embedding, representation learning, graph kernels
2. apply Euclidean machine learning techniques

> e.g. feed-forward neural networks

problem

> Euclidean representation independent of learning task
and machine learning model

> we want to learn representations tailored to specific
learning task (e.g. node classification)

» how can we apply end-to-end deep
learning to graph-structured data?

Ingo Scholtes Deep Graph Learning for Network Scientists

supervised unsupervised
community detection
node node classification node embedding
level
g link prediction link prediction
f se link classification | graph reconstruction
evel
graph classification graph clustering
graph . .
level graph regression graph embedding

taxonomy of popular graph learning tasks
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Neural Message Passing and GNNs

» idea: use graph topology to update node features based e 0
on message passing algorithm . Gimer et al 201

P> network science view: discrete-time dynamical system

)

where h,(t € RY denotes state of node i at time t e

> nodes update their state h,(-t) based on states of their

neighbors, i.e.
L(t r (-1

where F is aggregation function and N(/) is set of add aggregation rule
neighbors of i node [ t=0|t=1] t=2
. a 1 5 16
» for add aggregation we get update rule b 2 4 17
[« 3 12 24
(t) _ (t—1) d 4 8 19
hi - Z hj e 5 7 20

JEN(i)
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Neural Message Passing and GNNs

» for networks without self-loops, nodes do not consider e 0
their own prior state

» to avoid this, we explicitly add self-loops

O S (c)
i J

JEN(i)U{i}
» we can additionally transform updated node state with
differentiable function g (e.g. a perceptron), i.e. e G
(t) (t-1) additional transformation with g(x) = 0.5+ 2 - x

hi =& Z hj node [ t=0] t=1]t=2
jeN(iU{i} a 1 125 ms
b 2 12.5 111.5
P> message passing is permutation equivariant, i.e. node ; 3 305 | 2095
4 24.5 159.5
permutation — consistent permutation of outputs h,(t) A 5 245 1595
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Degree-based Normalization

> heterogeneity of networks requires application of e 0
degree-based normalization

» we can use mean rather than add aggregation, i.e.

(6) Aty e
hi =8 Z

iEN() di
» we can apply symmetric degree-based normalization, i.e. e @
h(.tfl) symmetric normalization (and self-loops)
h(t) = g Z J
! ) ) \/W node | t=0 | t=1| t=2

eN() ™ a 1 18 2
b 2 1.8 21
c 3 27 3.6
d 4 3.8 35
e 5 3.8 35
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>
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Spectral Graph Convolution

for graph with adjacency matrix A and diagonal degree e 0

matrix D consider Laplacian matrix
L:=D-A

symmetric degree-based normalization yields symmetric e
normalized Laplacian - r chung 1997

[*=DifD:=1—D :AD: e 0

with entries
Symmetric Normalized Laplacian

1 e s .

———ifi and Aj =1 1 1
. Varg 7 Iend A S v
Li=q1ifi=] -3 v -5

0 else L* = —ﬁ —2—\1/5 11
0 0 =
message passing can be viewed as efficient localized o o ,Lf
2V2

version of spectral graph convolution

NetSciX School Lecture 2026, Auckland, New Zealand
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Connection to heat diffusion and CNNs

» consider Laplacian operator describing heat diffusion in

continuous Euclidean space

2
Vf::af

Vf(x,y) captures how f(x, y) deviates from average of

f in neighborhood of (x, y)

for discrete lattice network, Laplacian operator

corresponds to Laplacian matrix

in image data (where pixels are connected in a lattice) we
can use Laplacian convolution kernel to detect edges

spectral graph convolution allows to detect “boundaries”
or “discontinuities” in graphs with arbitrary topology

a2 )2

Deep Graph Learning for Network Scientists

0 50

image after applying
Laplace filter

Laplace filter
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Graph Convolutional Networks (GCN)

> message passing with self-loops and symmetric
degree-normalization defines Graph Convolutional Networks
(GCN) — T Kipf, M Welling, 2016

P update rule in message passing layer of GCN given as

(k-1)
A = (W 3

jengiu{iy V didj

where W(K) ¢ RIY 5 d(k=1) are learnable weights and o is
non-linear activation function

P> message passing layer k maps node representations
A=Y ¢ Ra® 4o k) ¢ g™
1

i
> we can add dense classification layers after k message passing
layers to learn latent representations of nodes
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https://tkipf.github.io/

Computation Graph of GCN

Graph Convolutional Layers (Dense) Classification Layers

N O X XFHO,

# of Nodes # of Classes

in the tutorial notebooks we implement convolutional
ol T e neural networks (CNN) for image classification from scratch
and then generalize them to graph convolutional networks

see notebooks 07 - 10 in repository at R .
(GCN) using pytorch-geometric

— https://github.com/pathpy/2026-netscix-tutorial/
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Deep learning in complex networks

» graph convolutional network (GCN) = neural
network architecture for graph-structured data

— T Kipf, M Welling, 2017

» neural message passing: use complex network to
iteratively update node features based on

1. differentiable function with (learnable) parameters
2. neighbor aggregation function
3. non-linear activation function

end-to-end representation learning

> use differentiable loss function to compare model output to
ground truth (supervised setting)

> partial derivatives w.r.t. model parameters yield gradients that
point towards local minimum of loss function

> GPU-accelerated backpropagation algorithm to learn “useful”

vector space representation
— DE Rumelhart, GE Hinton, RJ Williams, Nature, 1986
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Graph representation learning

feature=1

feature=0

feature=0

feature=1

synthetic graph with four classes of nodes

0.0

graph topology

-0.5
L ]
L
e 3. e® o° °®
node features
4)

-4 -3 -2 -1 ) 1 2 3

internal representation of nodes learned by Graph
Convolutional Network

learned latent representation captures patterns in node features and network topology

Ingo Scholtes

Deep Graph Learning for Network Scientists
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Example: GCN-based Node Classification

example

Karate club network with n = 34 nodes and m = 77 links, where ground truth node classes

y are given by groups

@
....
® " ®
®
o 2%
® e°
o7
® ..,.
MO, ®
® o gooo

training network with 70 % labeled nodes

Deep Graph Learning for Network Scientists

@ e
g |
0.. N -.

predicted node classes in test set

(accuracy 90%)

NetSciX School Lecture 2026, Auckland, New Zealand
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Example: Latent Node Representations

example

Karate club network with n = 34 nodes and m = 77 links, where ground truth node classes

y are given by groups

@ ®
®®@
@ ©)
® & & ©
& @
e ®0
%
o 0%

Karate club network with
ground truth node labels

Ingo Scholtes Deep Graph Learning for Network Scientists

05 1.0 15 20 25 3.0 35

latent representation of nodes extracted from activations in
first hidden layer (d = 16) of GCN (representation in R? via
Truncated SVD)
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Semi-supervised Learning in Graphs

P> use of topological features enables application
of GCN to semi-supervised learning in graphs

® ® ®
. . . ®
semi-supervised learning ® @
machine learning techniques that can simultaneously use large @ ® @
amounts of unlabeled data as well as small amounts of labeled ® @ ®
data . y . /
' @
@ O
example ...
semi-supervised node classification in network with a single
labeled node per class ()
@ e o
© ®
P> message passing layers smoothen existing ® @ ® 90 ®
labels across unlabeled nodes close to labeled
ones
Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17
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Example: Semi-Supervised Graph Learning

example

> semi-supervised node classification in Karate club network with n = 34 nodes and
m = 77 links

> ground truth node class given for one node in one community

® )
0...0. 0...0.
® o o © ® o ¢ ©
o o8/ o o8/
® e® ® 0 ©
o% 6%
o.o .‘.. o.o ..%
® o gooo ® o goeoo

training network with single labeled node predicted node classes in test set using GCN with single

message passing layer
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Example: Semi-Supervised Graph Learning

example

> semi-supervised node classification in Karate club network with n = 34 nodes and
m = 77 links

> ground truth node class given for two nodes in two communities

@ ® @ )
... ...
) @
® o o .’ ® o @° ..
o o9/ g0/
® e OORY
¢% 0%
o.o .‘.. o.o ..%
® o gooo ® o goeoo

training network with two labeled nodes predicted node classes in test set using GCN with single

message passing layer
(accuracy 87.8%)

Ingo Scholtes Deep Graph Learning for Network Scientists NetSciX School Lecture 2026, Auckland, New Zealand 2026/02/17
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Research Challenge: Expressive power of GNNs
graph isomorphism
> consider graphs G = (V4, E1) and G = (V2, E2)
» graph ismormorphism = basis to study > Gp and G are isomorphic iff there exists a bijection
. . 7 : Vi — V5 that preserves all edges
expressive power of neural message passing

» which networks are distinguishable by GNNs?

Weisfeiler-Leman (WL) color refinement algorithm

> start with identical node features (e.g. colors)

» update nodes iteratively by aggregating features of
neighbors and assigning new features (e.g. R+R = B)

> repeat until no new features are assigned

> final node features = graph signature or “representation”

» WL-algorithm provides one-sided heuristic to
distinguish non-isomorphic graphs

— B Weisfeiler, A Leman, 1968

» properly parameterized GNNs not more
powerful than WL-algorithm — cuoris et al, asar 2010
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Research Challenge: GNNs for Heterophilic Networks

» most GNNs are designed for homophilic networks where
connected nodes tend to have similar features or labels

‘The Heterophilic Graph Learning Handbook:
Benchmarks, Models, Theoretical Analysis, Applications and Challenges

Sitao Luan Chenging Hua ' Qinchens Lu® Libcng Ma' Lirong Wa Xiayu Wang? skai o'
oo Wen Chang Dot Precup! e Ving Stan 2 11’ Jin Tomg. "+ Gy Wall 7+ Sttane el

» interpretation of GCN in terms of spectral graph e
convolution: low-pass filter that smoothens node
features across edges

» in heterophilic networks connected nodes tend to have
different features and/or labels

» simple GNN models like GCN perform poorly on
networks with (malignant) heterophilic patterns

—» Z Pei et al, ICLR 2021
— https://arxiv.org/pdf/2407.09618

> GNN architectures for heterophilic networks are an
act|Ve area Of resea rCh > S Luan et al. 2024
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Research Challenge: Over-smoothing and Over-squashing

> number of message passing layers in GNNs determines
how far information can propagate in a graph

» small number of layers -> GNN cannot capture
long-range dependencies

P GNNs typically perform best with 2-3 layers

problems with “deep” GNNs

» over-smoothing: for large number of layers node
representations become indistinguishable

» over-squashing: long-range dependencies may not captured
due to bottlenecks in the graph

P> mitigating over-smoothing and over-squashing is active
area of research, addressed e.g. via targeted rewiring
s nwatietal 204 OF Graph Transformers — asnenzad et 205

Mitigating Over-Smoothing and Over-Squashing using
Augmentations of Forman-Ricci Curvature

https://proceedings.mlr.press/v231/
fesser24a/fesser24a.pdf
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Research Challenge: GNNs for Noisy Data

» real-world data is often noisy, e.g. due to measurement B ——
errors or missing data

P> GNNs can be sensitive to noise in the graph structure
and/or node feature/labels

exemplary network science approach

> treat observed network as random realization from
underlying statitical ensemble of graphs

» calculate uncertainty estimates for edges

in message passing, use uncertainty estimates to weight
messages

— https://openreview.net/pdf?id=N8tCUSZUFM

» improving robustness of GNNs against noise in input more on Feb 18, 11:30 (stream 1)

data is active area of research — zsnafietat 2024
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Research Challenge: GNNs for Temporal Networks

» graph = model for possible causal influence between
nodes in a networked system

» neural message passing in graph neural networks uses
all possible paths

» but: cause must temporally preceed effects

from to when

“ | shall use the phrase "time’s arrow’ to ex-
press this one-way property of time which has
no analogue in space.” —; sir Arthur Eddington

open issue

state-of-the-art temporal graph neural networks
Sir Arthur Stanley ignore arrow of time in temporal networks
— L Qarkaxhija, V Perri, | Scholtes, PMLR 2022

Eddington
1882 - 1944

image credit: public domain
Ingo Scholtes Deep Graph Learning for Network Scientists
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D B 12:36
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Causality-aware temporal GNNs

» De Bruijn graph neural network (DBGNN) = deep learning
architecture using higher-order De Bruijn graphs

P idea: perform neural message passing to higher-order
model that forces messages to follow arrow of time

causality-aware graph representation learning

» gradient descent optimization yields static vector space
representation of temporal network that captures...

P topology of interactions between nodes
P “causality” due to temporal order of interactions

» substantially increases model performance compared to
state-of-the-art (temporal) GNNs ¢ Qarkaxhija, V Perri, | Scholtes, PMLR 2022

» integrating network science insights into temporal
networks with time-aware GNNs is active area of
research

Weisfeiler and Leman Follow the Arrow of Time:
Expressive Power of Message Passing in Temporal
Event Graphs

Abstract

— https://arxiv.org/abs/2505.24438

more on Feb 18, 11:45 (stream 1)
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Network Science vs. Deep Graph Learning

statistical ensembles
inference in uncertain data
dynamical processes

Network higher-order networks Deep
SCience scalable learning Learning

(semi-)supervised learning
learning theory

expressiveness
NetSci / NetSci-X Neurlps
Phys. Rev. E ICLR
Phys. Rev. Lett. ICML
Nature Comm. AAAI
Advances in Complex Systems SIGKDD

EP) Data Science LoG
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Nga mihi

Open Source library pathpyG

based on torch and torch-geometric

direct connection to netzschleuder repository for data loading
makes it easy to apply GNNs to static and temporal networks
causality-aware temporal graph learning via De Bruijn graph
neural networks

PATHPYL)

Wwww.pathpy.net

\AAA
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Deep Graph Learning will stall without Network Science

Christopher Blocker © % Martin Rosvall o Ingo Scholtes o' Jevin D, West o+

Abstract

Dcp graph caming focuses on fexibl and gen-
eralzable models that learn paterus in an st
mated fshion. Network science Focuses on od-
elsand messures rexealing th organiztiona prin-

et o that 10 change, and argue for itegrating network
Science insights ito deep eraph learning.

ming s sveal core cllnge, Mt
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ions. Roth e share the same goa: o better

sraphs. And hey mustdevelop message-passing schemes

. R, de g aming pnrcs

ience. Our posiion is
¢ will stal withou in

that decp graph lears

edges. Network science has been thinking about hese is
sues for years, though from a different perspecives 1
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in deep graph learn
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